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Abstract

The goal of this task is to classify modes of locomotion from body-worn sensors. Hence, I propose a 

solution including three steps involved in activity recognition process. First, I select the features to be 

included in the recognition process. Second, I reduce the dimensionality of the given datasets by 

transforming them using Principal Component Analysis (PCA). Third, I use K Nearest Neighbor algorithm 

to recognize the locomotion.

Feature Selection, Dimensionality Reduction and Feature 

Transformation

All the features are considered for activity recognition except the first time feature which is measured in 

milliseconds because of its low importance in comparison to other features.

Due to the large number of provided features, a dimensionality reduction method is used. Principal 

Component Analysis (PCA)(Pearson, 1901) is used to map the high dimensional dataset into a smaller 

one in order to remove irrelevant features and remove correlation among some other features. I use 

Weka(Weka 3: Data Mining Software in Java)to perform PCA on the datasets with a Ranker search which 

selects the highly ranked features due to “the amount of variance each accounts for”(Principal 

Component Analysis with Experimenter, 2011).The chosen percentage of the variance in the original 

data is default 0.95 (95%). Transformed dataset is obtained individually for each test subject datasets. 

Thus, one PCA transformation dataset for Subject 2 including all the subjects’ s datasets (S2-ADL1,S2-

ADL2,S2-ADL3,S2-ADL4,S2-ADL5,S2-ADL-Drill) and another PCA transformation dataset for Subject 3 

including all the subject’s datasets (S3ADL1,S3-ADL2,S3-ADL3,S3-ADL4,S3-ADL5,S3-ADL-Drill).The 

selected features by PCA for Subject 2 are 69. While the selected features for Subject 3 are: 68



Recognition Algorithm

I use K nearest neighbor KNN to (Alpaydın, 2004) recognize the classes of test datasets. I ran the 

algorithm on transformed datasets (as explained in the preceding section). The setting of the algorithm 

is default in Weka (IB 1). Normalized Euclidean distance is used to find the closest training point to the 

testing point. Again, the algorithm is run on each transformed dataset separately. Thus, training is 

subject-dependent.
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Abstract—This report explains the implementation details
for activity recognition challenge submission. Description of
the training model, features selected, and proposed method is
represented in this report.

I. INTRODUCTION

The submitted results are for Task A to classify the locomo-
tion of unlabelled data in both subjects 2 and 3 with j48graff
algorithm.

II. TRAINING MODEL

Activity recognition algorithms are typically using models
created by the classification methods. Training labelled data is
been used to create a model for the different activities. These
data serve as examples to the classification method, so it can
associate certain attributes of the data with each activity. Each
training data point includes the label of its associated activity
as well as the attributes that are extracted as indicators of the
activity. When the model is ready, it can be used to classify
unlabelled data.

The accuracy of the classifier strongly relies on the ro-
bustness of the training model. Therefore, Over-fitted or poor
models could be the main reason for poor classification
performance.The possibility of over-fitting exists when the
criterion used for training the model is not the same as the
criterion used to judge the efficacy of a model. In particular, a
model is typically trained by maximising its performance on
some set of training data. However, its efficacy is determined
not by its performance on the training data but by its ability
to perform well on unseen data.

The data used for the challenge is composed of the record-
ings of four subjects. Two types of recording sessions were
performed: Drill sessions where the subject performs sequen-
tially a pre-defined set of activities and ”daily living activities”
runs (ADL) where he executes a high level task (wake up,
groom, prepare breakfast, clean) with more freedom about the
sequence of individual atomic activities[1]. Therefore, building
the training model from daily living activities should achieve
a better performance when testing on data with the same
criterion. For each subject, the training model is built from
the labelled ”daily living activities” distributed in the three
segments( ADL1, ADL2, ADL3).

All unrecognised activities in the training examples have
been omitted and ignored in building the training model to
enhance the classification performance.

III. FEATURES SELECTION

Challenge dataset composites of 114 features including 36
features from the accelerometer sensors and 77 from the inertia
sensors and one feature representing time.

The only feature that has been ignored for both training
and testing was the time feature. As The time feature is
representing the time elapsed since the start of recording ,
it has no effect on the type of classified locomotion for daily
live activities.

IV. ALGORITHM

Methods deployed for activity classification were recently
reviewed in [2]. Methods like artificial neural networks, sup-
port vector machines, K-nearest neighbour, decision trees,
Bayesian classifiers, etc. are commonly used. However, deci-
sion tree has been popularly deployed for activity recognition
because of its simplicity and efficiency.

Decision tree grafting has been deployed for classifying
the challenge data. Decision tree grafting adds nodes to an
existing decision tree with the objective of reducing prediction
error. Grafting new nodes to correct poor classification can
significantly improve the predictive accuracy of the inferred
decision trees.The details of the grafted decision tree is found
in [3].

J48graft Weka implementation [4] has been used for training
and testing purposes.

A. Parameters

The parameters used for algorithm implementation with
their set values are described as follow:

• binarySplits: Whether to use binary splits on nominal
attributes when building the trees. The value has been
set to: False.

• confidenceFactor: The confidence factor used for pruning
The value has been set to 0.25.

• minNumObj: The minimum number of instances per leaf.
The value has been set to 2.



• subtreeRaising: Whether to consider the subtree raising
operation when pruning.The value has been set to True.

• unpruned: Whether pruning is performed. The value has
been set to False.

• useLaplace: Whether counts at leaves are smoothed based
on Laplace .The value has been set to False.
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Fig. 1 Block diagram of our methods 

 

Fig. 1 shows the block diagram of our proposed method. This involves a number of data 
processing techniques such as filling missing data, removing faulty sensor data, removing 
remaining NaN instances, balancing the data, scaling as well as SVM learning. In the 
testing phase, we fuse our SVM classification results and the 1NN results. Also by 
considering the sequence nature, we smooth out our classification output.  

2. Data Preprocessing 

Filling up the Missing Data 

We use spline interpolation together with the time data to perform interpolation using the 
Matlab function interpl.  An example code block is shown below. 

     … 



    b = Y(:,1); %Time axis 
        a = Y(:,j); %A data col with missing data 

        idx = find(~isnan(a)); 
         
        if length(idx) < m && length(idx) > 1 %fill the missing data 
            a = interp1(b(idx),a(idx),b, 'v5cubic'); 
        end 
        … 
 

Remove the Fauly Sensor Data 

We find that for several sensors (Column 35-37), the majority of their data are missing. 
As it is hard to give them good approximation, we simply remove these data. Also we 
remove the columns corresponding to the time (first column) and the gesture label (the 
last column). For gesture recognition, we remove the locomotion labels (the second last 
columns). 

 

 

Remove the NaN Rows 

After the above two steps, we find there are always records at the bottom of each data file 
still containing NaNs. This is because we choose to perform intepolation only (no 
extrapolation) in filling up the missing data. We find all these remaining NaN records 
correpond to Null records. Therefore, we simply remove them from our training and 
testings.    

 

Balance the Data 

We find that for the classification tasks, the training data from the different classes are 
fairly imbalanced.  Note that in solving tasks A, B1 and B2, we used all the data in drill, 
adl1, adl2 and adl3 for training after removing the Null records. For Task A, as data from 
the four locomotions are fairly imbalanced, we use oversampling and undersampling 
technique to prepare 20,000 records per class for learning.  For Task B1, we select all 
activity records and randomly choose the same total number of records from the null 
class. For Task B2, we use undersampling and oversampling to have 2000 records for 
each class. 

For classes with more than our required learning records, we perform random 
undersampling to select the needed records. 



For classes with less than our required learning records, we perform structure preserving 
oversampling (SPO) to generate synthetic samples to make up for the additional records 
needed. The SPO algorithm is aimed to create synthetic samples by preserving the current 
covariance structure and intelligently generating some protective variances in the trivial 
eigen dimension. One can find our paper in https://sites.google.com/site/sstarcao/home . 

 

Data Scaling 

We find the maximal and the minimal values for each feature. Then, we perform the 
linear feature scaling to normalize each feature into the range [-1, +1].   

 

Searching for Best SVM parameters 

Based balanced and scaled training feature set, we perform grid searching for the best 
parameters (C, g) in log scale, which give the maximal recognition accuracy. The 
parameters are associated with SVM learning with radial basis kernel. We find that our 
best (C, g)s found are either (32, 0.5) or (8, 0.5)  for the different tasks with S2 and S3.  

To improve the speed, this process sometimes is performed on a random down-sampled 
dataset. 

 

3. SVM Learning and Classification 

We perform SVM training with the best parameters to learn a four-class classifier (Task 
A), 2-class classifier (Task B1) and 18-class classifier (Task B2) using LIBSVM tool. 
The classifier is then used to predict the labels for the testing data. After filling the 
missing data and removing the faulty sensor data, if a record still contains NaN, we 
simply classify the record to the Null record without using our SVM classifier.  

For the 1NN classification, we get the classification outcomes based on all the training 
data and the scaled features. 

Our fusion of the two decision outcomes is through interleaving the SVM labels and the 
1NN labels and then performing median filter-alike smoothing operations. Our Matlab 
code for this part is attached in this appendix (also as email attachments) 

 

 



 

Appendix 

 

 
%This is the code for integrating the classifications from SVM and 1NN 
for 
%Task A, Subject 2 and ADL4 
  
%Including paths 
addpath('C:\Users\Cao Hong\Desktop\Challenge Act 
Recognition\Submission\SSTAR_Hong'); 
addpath('C:\Users\Cao Hong\Desktop\Challenge Act 
Recognition\Submission\NSTAR_Minh'); 
  
Filt_Len = 9; %for Task A. For task B1 and B2, we choose Filt_Len = 61 
  
  
%Load Data 
load A_2_SSTAR.mat adl4 
load A_2_NStar.mat A_S2_ADL4 
  
S = adl4;        %SVM Labels 
K = A_S2_ADL4;   %KNN Labels 
  
if size(S, 1) ~= size(K, 1) 
    error('Mismatching label dimensions'); 
end 
  
len = length(S); % the length 
  
%Creating Combined interleaved labels 
J = zeros(2*len,1); 
for i = 1:len 
    J( i*2-1, 1 ) = S(i,1); 
    J( i*2, 1)    = K(i,1); 
end 
  
D = medfilt(J, Filt_Len); 
J = D; 
  
%Flag = 1 if a confusion is found 
Flag = ones(len,1); 
C    = zeros(len,1); % To store the combined end labels 
for i =1:len 
    if J(2*i-1,1) == J(2*i,1) 
        C(i,1) = J(2*i); 
        Flag(i,1) = 0; 
    end 
end 
  



%Iteratively resolve the confusions 
Ite = 0; 
while sum(Flag) > 0 
     
    Ite = Ite + 1; 
    idx = find(Flag==1); 
     
    if Ite >=50 
        for i = 1:length(idx) 
             
            C(idx(i),1) = J(2*idx(i)-1,1); 
            Flag(idx(i)) = 0; 
        end 
        break; 
    end 
     
    for i = 1:length(idx) 
         
        pos = idx(i); 
         
        sAgr = 0; 
        kAgr = 0; 
         
        if pos - 1 > 0 
            if Flag(pos-1) == 0 
                if J(2*i-1,1) == C(pos-1,1) 
                    sAgr = sAgr + 1; 
                end 
                 
                if J(2*i,1) == C(pos-1,1) 
                    kAgr = kAgr + 1; 
                end 
            end 
        end 
         
        if pos + 1 < len 
            if Flag(pos+1,1) == 0 
                if J(2*i-1,1) == C(pos+1,1) 
                    sAgr = sAgr + 1; 
                end 
                 
                if J(2*i,1) == C(pos+1,1) 
                    kAgr = kAgr + 1; 
                end 
            end 
        end 
         
        if max([sAgr kAgr]) >0 
            if sAgr >= kAgr 
                C(pos,1) = J(2*pos-1,1); 
            else 
                C(pos,1) = J(2*pos,1); 
            end 
            Flag(pos) = 0; 
        end 



         
    end 
     
end 
  
adl4=C; 
  
save A_2_4_CSTAR adl4 
  
%EOF 
  
%------------------------------------------------------- 
 
  
%This is the function for Median filter-alike smoothing 
function D = medfilt(J, Filt_Len) 
  
len = length(J); 
D= J; 
  
Thr = 0.4*Filt_Len; 
  
for i= ((Filt_Len+1)/2) : (len - (Filt_Len-1)/2)  
     
    neighbor = J( (i-(Filt_Len-1)/2) : (i+(Filt_Len-1)/2), 1 ); 
    idx = find( neighbor~=0); 
     
    if length(idx) > Thr 
        D(i,1) = mode(neighbor(idx,1)); 
    else 
        D(i,1) = 0; 
    end    
     
end 
  
%EOF 
%------------------------------------------------------------ 
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General Description of the Approach used for the contest

TASK A

For the detection of the locomotion states, some considerations are made for every locomotion and 
some constraints are to be fulfilled by the data in order to consider that the user is doing a specific 
locomotion.
The different subjects have been treated independently.
Many windows are computed from the test datasets (ADL 4 and 5), for every locomotion.
Each of the previous window satisfies the constraints of the relative locomotion and every locomotion 
constraint can include different subsets of the sensors used by the user.
There are some priorities between the different locomotions: “lie” has the major priority, followed in 
order by “sit”, “walk”, and “stand”.
If more than one locomotion window overlap on the same samples the window with the highest priority 
is taken and the others are deleted.
Some constraints are considered for “lie”, “sit”, and “walk” whereas no constraints are used for 
“stand”. This because “stand” is always detected when no other locomotion states are detected.

TASK B1-B2-C

The same approach has been used for task B1, B2, and C, and the different subjects have been treated 
independently.
The approach consists of two phases: a training phase and a testing phase.

During the training phase, the Drill set has been fused together with ADL 1, 2, and 3 sets. For each 
occurrence of every gesture, isolated on the basis of the provided labels, different features has been 
collected: the mean, the standard deviation, the minimum and maximum values, and the duration (in 
samples).
Then, for every gesture the following values has been stored: the maximum value of all the maximum 
values (V), the minimum value of all the minimum values (v), the maximum and the minimum values 
of the mean (M and m),  the maximum value of the standard deviation (S), the minimum value of the 
duration (d).
After that, a testing phase has been applied to the data of the training phase in order to observe the 
performance of the system on the same data used for the training phase.
A testing phase consists in the following operations: for every gesture a scan of every sample of the 
dataset used is made and if the sample, that we call x, satisfy the following constraint:
v<x<V



this sample is marked as a possible occurrence of the relative gesture.
Completed the scan we will have many windows of samples in which the gesture could have been 
verified.
The window that has duration lower than d are then discarded.
Finally, only the windows with a mean c that satisfy the following constraint are considered:
m-S<c<M+S
For each gesture, the resulted labels (computed from the previous windows) are then compared with the 
actual labels and the performance of the detection of the gesture is stored. 

During the testing phase, instead, the test dataset (ADL 4 and 5) are taken and the same process 
described before is done on the data, except the computation of the performance.
The labels of every gesture are then fused together and, whenever more than one gesture is detected 
during a specific sample, the gesture with the best performance (computed during the training phase) is 
chosen.

For task B1, just “0”s and “1”s are considered and the gestures are not classified.
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Abstract. Hidden Markov Model (HMM), due to its ability to capture
temporal dependencies along with the emission dependencies, has been
an efficient tool for activity recognition systems [1][2]. In this submission,
we model the given problem using HMM for activity recognition and
report the results obtained on Task C data.

1 Team Name: NAGS

2 Description of the method used

In activities of daily living, the activity at a particular time step depends on
the activity that happened in the previous time step. Also the activity that is
happening at a particular time instance triggers some sensors whose values are
observable. Since Hidden Markov Model (HMM) is a probabilistic model that
captures the above two types of dependencies, we formulate our problem in an
HMM setup. We give a brief description of HMM for activity recognition in the
next paragraph.

In an activity recognition setting, the joint state of sensor values recorded
for every time unit forms the observation/emission in a Hidden Markov Model
(HMM) and is represented as xt at time t. The activities for each time unit is
the hidden state/label, represented as yt at time t, of HMM as shown in Figure
1. In a typical HMM setup, yt at time t is independent of all other variables
given yt−1 at time t − 1 and xt at time t is independent of all other variables
given yt [1][2]. Given the independece assumptions, the joint distribution of the
sequence of labels (Y ) and observations (X) of length l can be expressed as

P (X,Y ) =
∏l

t=1 P (yt|yt−1)P (xt|yt), where P (y1|y0), P (yt|yt−1), and P (xt|yt)
stands for the initial state distribution, the transition distribution, and the emis-
sion distribution respectively [4][3]. During the training phase, parameters are
learned by maximizing the joint probability, P (X,Y ), in the training data. For
prediction, the learned parameters are used to determine the label (activity)
sequence that best expains the observation (joint state of sensors) sequence. A
dynamic programming algorithm called the Viterbi Algorithm [5] is used to find
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Fig. 1: Graphical representation of an HMM. Circles represent hidden states and
ellipses represent observable variables

the maximum probable label sequence. We now discuss the experiments and re-
sults in the next section. We now discuss the experiments and results in the next
section.

3 Experiments and Results

For our implementation, we discretized the input parameters for Task C data
and ran Hidden Markov Model on that. For naive factorization, a conditional
independence is assumed among the observations (sensor values) given an ac-
tivity. All the five training examples are used for training. Inference is done by
dynamic programming algorithm, Viterbi [5]. Inference is done on S4-ADL4-
noisy.dat and S4-ADL5-noisy.dat data. The results are attached. The result file
names are “C 4 ADL4 NAGS.txt” and ”C 4 ADL5 NAGS.txt“. These are re-
sults of input files ”S4-ADL4-noisy.dat” and “S4-ADL5-noisy.dat” respectively.

4 Conclusion and Future Work

We have modeled the give problem for Task C using HMM for activity recogni-
tion. We have run experiments for Task C and the results are attached.
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I. Data Preprocessing 

1. Filling up the Missing Data 
We use spline interpolation together with the time data to perform interpolation using the Matlab 
function interpl.  An example code block is shown below: 

     … 

       b = Y(:,1); %Time axis 

        a = Y(:,j); %A data col with missing data 

        idx = find(~isnan(a)); 

         if length(idx) < m && length(idx) > 1 %fill the missing data 

            a = interp1(b(idx),a(idx),b, 'v5cubic'); 

        end 

        … 

2. Remove the Fauly Sensor Data 
We find that for several sensors (Column 35-37), the majority of their data are missing. As it is 
hard give them a good approximation, we simply remove these data. Also, we remove the 
columns corresponding to the time (first column) and the gesture label (the last column). 

 

3. Remove the NaN Rows 
After the above two steps, we find that there are always records at the bottom of each data file 
still containing NaNs. These remaining NaN records correspond to the Null records. Therefore, 
we simply remove them from our training and testing data sets.    



4. Data Scaling 
We use the z-scores normalization on each sensor’s signals. 

5. Remove Null-class instances 
We remove all the Null-class instances in the training data set for task A. 

II. Classifier and models  
Although there have been many algorithms proposed for time series classification, interestingly, 
the simple technique 1-NN classification based on the top one nearest neighbor with Euclidean 
distance was shown to be the very competitive technique. Therefore, we use the 1-NN 
classification for all the tasks. 

 

Task A: Multimodal activity recognition: Modes of locomotion 
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The label files are named as: A_2_NStar.mat and A_3_NStar.mat. 

 

Task B: Automatic segmentation and Multimodal activity recognition: 
Gestures 
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We use the same mode for both task B1 and task B2. However, in task B1, the predicted values 
for all the activity classes are set to 1.  

The label files are named as: B1_2_NStar.mat, B1_3_NStar.mat, and B2_2_NStar.mat, 
B2_3_NStar.mat. 
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1. Overview 

 

Fig. 1 Block diagram of our methods 

 

Fig. 1 shows the block diagram of our proposed method. This involves a number of data 
processing techniques such as filling missing data, removing faulty sensor data, removing 
remaining NaN instances, balancing the data, scaling as well as SVM learning. 

2. Data Preprocessing 

Filling up the Missing Data 

We use spline interpolation together with the time data to perform interpolation using the 
Matlab function interpl.  An example code block is shown below. 

     … 
    b = Y(:,1); %Time axis 

        a = Y(:,j); %A data col with missing data 

        idx = find(~isnan(a)); 
         
        if length(idx) < m && length(idx) > 1 %fill the missing data 



            a = interp1(b(idx),a(idx),b, 'v5cubic'); 
        end 
        … 
 

Remove the Fauly Sensor Data 

We find that for several sensors (Column 35-37), the majority of their data are missing. 
As it is hard give them good approximation, we simply remove these data. Also we 
remove the columns corresponding to the time (first column) and the gesture label (the 
last column). 

 

 

Remove the NaN Rows 

After the above two steps, we find there are always records at the bottom of each data file 
still containing NaNs. This is because we choose to perform intepolation only (no 
extrapolation) in filling up the missing data. We found all these remaining NaN records 
correpond to Null records. Therefore, we simply remove them from our training and 
testings.    

 

Balance the Data 

We find that for the classification tasks, the training data from the different classes are 
fairly imbalanced.  Note that in solving tasks A, B1 and B2, we used all the data in drill, 
adl1, adl2 and adl3 for training after removing the Null records. For Task A, as data from 
the four locomotions are fairly imbalanced, we use oversampling and undersampling 
technique to prepare 20,000 records per class for learning.  For Task B1, we select all 
activity records and randomly choose the same total number of records from the null 
class. For Task B2, we use undersampling and oversampling to have 2000 records for 
each class. 

For classes with more than our required learning records, we perform random 
undersampling to select the needed records. 

For classes with less than our required learning records, we perform structure preserving 
oversampling (SPO) to generate synthetic samples to make up for the additional records 
needed. The SPO algorithm is aimed to create synthetic samples by preserving the current 
covariance structure and intelligently generating some protective variances in the trivial 
eigen dimension. One can find our paper in https://sites.google.com/site/sstarcao/home . 



 

Data Scaling 

We find the maximal and the minimal values for each feature. Then, we perform the 
linear feature scaling to normalize each feature into the range [-1, +1].   

 

Searching for Best SVM parameters 

Based balanced and scaled training feature set, we perform grid searching for the best 
parameters (C, g) in log scale, which give the maximal recognition accuracy. The 
parameters are associated with SVM learning with radial basis kernel. We find that our 
best (C, g)s found are either (32, 0.5) (8, 0.5)  for the different tasks with S2 and S3.  

To improve the speed, this process sometimes is performed on a random down-sampled 
dataset. 

 

3. SVM Learning and Classification 

We perform SVM training with the best parameters to learn a four-class classifier using 
LIBSVM tool (select 20,000). The classifier is then used to predict the labels for the 
testing data. After filling the missing data and removing the faulty sensor data, if a record 
still contains NaN, we simply classify the record to the Null record without using our 
SVM classifier.  
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I. INTRODUCTION

To achieve accurate recognition from data of wearable
sensors, a data-oriented approach is deployed. We assume
that the sensor data themselves have sufficient information to
classify the locomotion classes. For example, the direction of
gravity are obviously different between lying and standing.
However, it has the risk of overfitting to straightly utilize the
naive classifiers e.g. decision stump. In addition, some of the
test data have lack of values. We solve these problems simply
but certainly, by selecting sensors and learning classifiers using
principal component analysis (PCA) and boosting.

II. METHODS

A. Procedures

Our method proceeds with the following:
1) Extracting feature vectors v
2) Compressing v into vc by PCA
3) Learning one-versus-the rest classifiers of each class of

locomotion by adaboost
4) Classifying the test data by all 4 classifiers
5) For each frame of test data, decide the class by majority

rule of neighborhood
Followings are the details of each procedure.
1) Since there are lack of values in both teacher and test

data, We eliminate sensors which have many lacks. We use
sensor values themselves, mean and variance of neighborhood
as features of each sensor. That is, the dimension of original
feature vectors v is three times of the numbers of sensors.

2) Before the compression, each feature are normalized into
the same mean and variance. Then v is compressed by:

vc = (c1...cn)Tv (1)

Where ci is the i-th principal component of {v}
3) To learn classifier with adaboost, each weak classifier is

the one-dimensional linear discrimination i.e.

φi,j,k(vc) = sign(vc(i) > j)k (2)

Where i is the used dimension, j is the threshold, and k =
{−1, 1} is the orientation of the classifier.

4) When the method classifies the test data, features of them
are extracted from the same sensor as these used for learning
classifier and compressed by the same matrix of step 2.

As a special case of step 4 and 5, if there are frames which
have lack of values except those already eliminated in step
1, the method skips to classify them and decide the class of
locomotion by that just before them.

B. Settings of Parameters and Other Condition

In this subsection, we note the settings for adapting our
method to the dataset[1], [2].

The parameters of our method is,
• The frames of neighborhood to extract features (step 1)
• The number of dimensions of compressed features by

PCA (step 2)
• The number of weak classifiers (step 3)
• The frames of neighborhood to decide classes by majority

rule (step 5)
We used 30 frames for features (e.g. means of frame 100
were evaluated from frame 70-130), 15 dimensions, 40 weak
classifiers, 40 frames for majority rule (it was the same as that
for features) from our experience.

As other condition, the list of eliminated sensors are in
(table). The numbers in the table correspond to those of the
original data (e.g. 5 is the value of axis x of accelerometer on
the hip). For reducing calculation time, we used half of the
extracted features of standing, walking, and sitting as teacher
data. Since the data of lying are much less than that of the
others, we used all of them.

TABLE I
INDEX OF UNUSED SENSORS FOR LEARNING CLASSIFIERS

Test Data Unused Sensor Index
S2 ADL4 8-10, 14-16, 20-22, 20-31, 35-37
S2 ADL5 2-4, 8-10, 14-16, 35-37
S3 ADL4 2-4, 11-13, 20-22, 35-37
S3 ADL5 2-13, 20-22, 35-37

REFERENCES
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ABSTRACT 

To accelerate and simplify human activity recognition 

research, we have been developing a data processing tool 

named “HASC Tool[1][2].” In this paper, we performed a 

data processing mechanism used for opportunity dataset 

which is implemented in the HASC Tool. By using the 

system, we finished Task A of Opportunity Activity 

Recognition Challenge. We also show the preliminary 

experimental result. 

Keywords   Activity Recognition, Activity Understandings, 

Opportunity, HASC Tool. 

INTRODUCTION 
In this paper, we introduce our method to classify 

locomotion (Task A). By using the part of HASC Tool, we 

performed a large number of evaluations with the user-

dependent data from opportunity dataset. 

In the following section, we first explain the toolkit we use 

to analysis the data. And then report the sensors we use. 

Third, we will report the method we process the activity 

dataset. We also report the features we use to learn the data. 

The last part of our paper will show the result and 

conclusion of the experiment.  

TOOLKIT FOR ACTIVITY RECOGNITION 

 

Figure1. Screen shot of the HASC Tool (XBD file) 

To boost the data handling and trial-and-error process of the 

signal processing, we have developed a toolkit named 

“HASC Tool.” Figure 1 and 2 show screen images of 

HASC Tool. HASC Tool is developed with Java and based 

on the famous IDE called Eclipse RCP. HASC Tool has 

following features.  

- Showing accelerometer signals and label data (Figure.2)  

- Create a process block diagram graph called “XBD.” By 

using “XBD,” one can easily automate the various signal 

processing and file processing (Figure.1). Without this kind 

of automation, handling thousands of files is not easy.  

- Real time / offline data acquisition with wireless sensors  

- Connection with WEKA Toolkit 

By using HASC Tool, we can exchange the process of 

activity recognition using XBD files.  

 

Figure2. Screen shot of the HASC Tool (wave view) 

THE SENSORS WE CHOOSE 

In the experiment, we use only 3 sensors, RKN^ 

Accelerometer, BACK Accelerometer and L-Shoe Body 

Accelerometer. Because opportunity dataset is a database of 

daily activities recorded in a sensor rich environment. It is 

very important to choose appropriate sensors. Here, I will 

give some reasons why I choose these sensors. First, the 

RKN^ accelerometer is on the upper side of the knee, so it 

is easy to be used to classify the locomotion of siting and 

standing.  Second, we use L-Shoe Body Accelerometer on 

the left foot, because this sensor can tell the difference 

between walking and standing. Third, to classify the 

activity between lying and siting, we use the accelerometer 

on the back. It can easily identify the activity of lying.  

METHOD 

To create the learning data, we segment the Drill data into 

many files by different labels.  There is some "NaN" data in 

the datasheet, so we do not use the segments which include 

"NaN" data of any of the 3 sensors as the learning data. 

There are no data with “lie” label in the Drill data, so we 

use “lie” data from ADL1 and ADL2 as the learning data. 

We do not use the data of “lie” from ADL3 because we 



want to use ADL3 to test our results. There are many 

activities last only a very short while and it is difficult to get 

features from them, so we use the activities longer than 

about 6 seconds as the learning data. And we also delete 

some bad learning data to raise our recognition rate. In 

HASC Tool data format, the labels and data are in different 

files. So we have converted the data into HASC format, so 

we can process the dataset in HASC tool. We use our 

toolkit HASC tool to get features from learning data.  

SELECTION OF FEATURE 

There are many researches on the field of activity 

recognition. Bao[6], Chang[4] and Lee[5] conducted the 

activity recognition by using some features of activity data 

and applied them to machine learning. They used various 

features such as mean, variance, standard deviations, energy 

and correlation features. From the purpose of this 

experiment to be a basic reference data, we used only 

simple features which are used by many researchers. In this 

experiment, activity data is a sequence of 3-axis 

accelerometer signal. We evaluated the activity data using 7 

features of each sensor’s axis, the features are mean, 

variance, and energy of each frequency band (four types). 

So the totally we use 54 features used for activity 

recognition. In the experiment, features were computed 

mean and variance features on 256 samples windows of 

acceleration data and the samples of windows on energy are 

128. The samples overlapping between consecutive 

windows are 56. We used C4.5 decision tree [3] on WEKA 

toolkit. We use the user-dependent data analysis to conduct 

the activity recognition. 

RESULT OF TASK A 

To test the learning algorithm and the learning dataset of S2 

and S3, we use S2-ADL3 and S3-ADL3 to test the 

recognition rate. The result of S3-ADL3 is shown in Table 

3. From the result of experiment on S2-ADL3, we got a 

total recognition rate of 88.56% and the result from S3-

ADL3 is 88.02%.  More details about the results of S3-

ADL3 are shown in the Confusion Matrix of table 1 and 2. 

CONCLUSION AND FUTURE WORKS 

In this paper, we report the human activity recognition 

experiments using Opportunity dataset. From the 

experiments, we confirm the strong demands for rich sensor 

environments for activity recognition. On future works, we 

will continue to work on opportunity dataset using HASC 

Tool for the activity recognition. We will try to use more 

advanced features and more accurate learning data, the 

activity recognition rate might be improved. 

 

Table1. Confusion Matrix of S2-ADL3 

% Stand Walk Sit Lie 

Stand 57.32 36.89 5.79 0.00 

Walk 2.36 97.28 0.36 0.00 

Sit 0.00 0.37 99.63 0.00 

Lie 0.00 0.00 0.00 100.00 

Overall 88.56 
   

 

Table2. Confusion Matrix of S3-ADL3 

% Stand Walk Sit Lie 

Stand 90.37 8.69 0.93 0.00 

Walk 31.72 68.28 0.00 0.00 

Sit 2.61 0.00 94.85 2.54 

Lie 0.00 0.00 1.41 98.59 

Overall 88.02 
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